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Statistical properties of turbulent density fluctuations 

By L. N. WILSON AND R. J. D A M K E V A L A  
IIT Research Institute, Chicago, Illinois 

(Received 12 September 1969) 

The cross-correlation technique has been used to obtain statistical properties 
of scalar density fluctuations. Two schlieren instruments with their optical beams 
intersecting in the turbulent field each give a signal proportional to the density 
gradient in the flow direction but integrated along the beam path. Cross-correla- 
tion of the two signals gives an area integral of the density-gradient covariance. 
For locally isotropic conditions the area integration can exactly compensate for 
the two gradients giving a result proportional to the local mean-square density 
fluctuation at the beam intersection point. 

Experiments performed in the shear layer of a subsonic jet show results which 
tend to verify the principles of crossed-schlieren measurement. Intensity levels 
are close to those predicted assuming density fluctuations are related isen- 
tropically t o  local, incompressible pressure fluctuations. 

1. Introduction 
Studies of scalar turbulent fields have been limited almost entirely to the 

analysis of mixing processes. This is a result of the difficulty of obtaining direct 
experimental measurements of scalar quantities like temperature, density or 
concentration a t  points within the flow. Some indirect measurements have been 
reported by Kistler, O’Brien & Corrsin (1954) using hot wire techniques, 
operating under conditions where the wire was sensitive to both temperature and 
velocity. It was then necessary to separate the effects of the two (scalar and 
vector) fields. More recently a new technique, the crossed-beam correlation tech- 
nique, was developed by Fisher & Krause (1967) which measures the light scat- 
tered from two optical beams crossed in the region of interest in a turbulent air 
jet. By cross-correlating the signals from each beam, local information on the 
statistical behaviour of scatterer number-density in the vicinity of the inter- 
section point was extracted. Unfortunately it was necessary to seed the flow with 
artificial scatterers to give sufficient signal levels and therefore the results could 
not be related directly to a local scalar property of the air. I n  principle, the 
technique can use absorption by a flow constituent to give the required signal 
which can be related to its temperature and density. However, not only is the 
relation in general a complicated one, but most fluids of interest, in particular 
air, have no strong absorbers in the visible portion of the spectrum. Moreover, in 
order to obtain local fluctuation level estimates using either scattering or absorp- 
tion it is necessary to estimate turbulent scale lengths along the beam directions. 
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The present study employs the crossed-beam correlation technique in a manner 
designed to give the local refractive index fluctuations from which mass-density 
fluctuations can be inferred directly, both being local properties of the fluid. 
The refractive-index changes are monitored by using the crossed-beam as a 
schlieren instrument, the signals obtained then being a measure of refractive- 
index gradients. Since crossed-beam geometry results in an area integral in the 
cross-flow direction, these gradients tend to be integrated out and no independent 
scale-length estimates are then required. The underlying analysis required and 
some experimental results are given in subsequent sections. 

2. Crossed-beam schlieren instrument 
The basic operation of a crossed-beam schlieren instrument is best described 

by reference to figure 1. Two collimated beams of light, A and B, parallel to the 
Y and Z axes respectively, pass through the flow normal to the flow direction X .  
The beams are separated a distance < along the flow direction. Each beam is 
focused on a detector after being partially cut off by a knife edge placed per- 
pendicular to the flow direction. In  this configuration, the signal at the detector 
in each case is proportional to the refractive-index gradient in the X direction. 

A refractive-index gradient in the X direction causes the beam to bend a small 
angle 19, with the result that the beam moves normal to the knife edge a distance 
10 causing the light intensity on the detector t o  change a proportional amount. 
I is the distance from the disturbance to the knife edge. 

1_1 
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FIGURE 1. Sketch showing arrangement and co-ordinate axes for dis- 
cussion of crossed-beam schlieren instrument. 

(vertical) 

These schlieren systems are somewhat unconventional in that they employ 
lenses only past the knife edges, their purpose being to prevent overfilling the 
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detectors and to simplify alignment. No attempt is made to make the systems 
particularly sensitive. The reason for this is that a circular cross-section beam 
was used and if the signals measured are to be directly proportional to refractive 
index gradients, the movement 16' must be much smaller than the beam diameter 
d. I n  this mode of operation the distance 1 from the disturbance to the knife 
edge is not usually constant so that more distant points in the flow are weighted 
more heavily. After cross-correlation of the signals the effect is small as long as 
1 is always much larger than correlated lengths within the flow. It should further 
be pointed out here, that fluctuations whose scales are smaller than the beam 
diameter are not properly resolved. This gives an upper limit to the frequencies 
which can be measured, and is typically above 30 kHz for the nominal 1 mm 
beams used in the present study. 

If the mean signal measured on the photodetector is E and a deflexion 8 causes 
a change in signal of e, then, theory of schlieren operation, covered for example 
by Liepmann & Roshko (1957) gives e = SZB where S is the schlieren sensitivity. 
For a linear response S is a constant of the system, and for a logarithmic response 
S = CTE, where CT = 81/nd for a circular beam. Continuous measurement of e 
then allows us to determine the deflexion history of 6' integrated along each beam. 
It now remains to relate these signals to the refractive-index and density changes 
and show how the information in the region of beam intersection can be extracted. 

3. Analytical background 

(see for example, Born & Wolf 1959) according to 
A light ray, passing through a medium of variable refractive index is deflected 

0 =JoL(n. NgradN l )  ds, 

where 0 is the deflexion angle along a light path s integrated over a distance L, 
n is the unit vector normal to s and N is the index of refraction, assumed to be 
comprised of an ambient value No, a local mean change no relative to ambient 
and a local fluctuating part n, such that N = No +no + n. 

In  the reference frame of the crossed-beam schlieren instrument, with knife 
edges oriented as shown in figure 1, we may approximate this angle for beam A by 

Assuming that n, no both are much less than No, then 

and a similar expression can be written for the other beam 

The first terms of these expressions represent the mean beam deflexion 8, and 
the second the fluctuating deflexion O ( t ) .  
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Multiplying by 0, and averaging over a long time interval we obtain, for 

This can be related to the a.c. coupled schlieren-detector outputs e44 and eB 

The refractive index of a gas can be related to its density through 

N-1 =El?, 

where a is the Gladstone-Dale constant, a property of the gas and a function of 
the wavelength of the light source. 

Assuming r, the density, to be separable into the ambient value Po, a rnean 
change po relative to ambient and a fluctuation p, so that 

= ro+po+p, 

then 
an ap 
ax ax 
- = a-. 

Transforming to axes 6, 7, 5 centred at the beam intersection point IC, y, z and 
defining a crossed-beam covariance, Q, we then obtain 

At this stage, it is necessary in order to proceed further to assume that, the 
turbulence is homogeneous over distances for which the covariance in the in- 
tegrand of (6) contributes appreciably to the integral. This allows two simplifica- 
tions of the equation: (i) the integration limits may be extended to include 
- 03 to + 03 for both variables; (ii) the integrand may be replaced by 

where Q(6, 7, 5 )  is the two-point density covariance. 
Then equation (6) becomes simply 

I n  order to understand more clearly what Q, represents, we can perform a 
one-dimensional Fourier transform of ( 7 ) ,  and obtain the experimentally acces- 
sible schlieren 'energy' spectrum Es(~ , ) ,  

W 

Es(~,) = LJ 8n3 -a Qs(O exp ( - i ~ , 6 )  d6 

where K ,  is the X component of wave-number. 
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This may be integrated by parts twice with respect to 6 to give 
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That is, the crossed-beam schlieren system gives, in locally homogeneous flow, 
a spectrum which is K: times the one-dimensional (streamwise) component of the 
three-dimensional spectrum. 

The ability of the crossed-beam to measure a three-dimensional spectrum 
directly has been noted before (Wilson et al. 1969) and is distinct from the two- 
point measurements (e.g. hot wire) which determine the so-called one-dimensional 
spectrum. The spectrum E, represents the classical energy spectrum function 
and will exhibit a peak with. wave-number rather than remaining flat at small 
wave-numbers as is the case for two-point measurements. The peak for E, will 
in fact occur at a wave-number corresponding to  the scale of the main energy 
containing eddies, whereas the peak of E3 would occur a t  a somewhat smaller 
wave-number, corresponding to the main convection or diffusion eddies. 

The two-point covariance Q can be obtained directly from measurements of 
Q, if we make a further restrictive assumption that the turbulence is locally 
isotropic within volumes corresponding to  the range of the homogeneous assump- 
tion. Then we can rewrite (7) as 

where r2 = t2 + y2. Now 
d2Q t 2 d 2 Q  1 
dc2 r2 dr2 r 

- 

for isotropic conditions and substituting this in (1 1) we finally obtain 

From this &,(O) = 2n&(0) = 251<P2) 

or 

and 

(13) 

These give the very useful results that (i) the mean square density is directly 
proportional to the schlieren covariance obtained at  zero beam separation and 
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(ii) the two-point density covariance can be obtained by a simple integration of 
the schlieren covariance with beam separation. 

The f i s t  result could be predicted intuitively from (7) by observing that for 
isotropic conditions the double integration will counteract the double differentia- 
tion for f = 0,  and scale lengths in the 7 and < directions are no longer important 
as mentioned earlier. Since the integrand of (6) involves density derivatives, the 
length scales are reduced and the isotropy condition may not be too severe. 

Some preliminary measurements using these crossed-schlieren concepts are 
presented in the following section. 

4. Experiments 
A photograph of the crossed-schlieren instrument is reproduced as figure 2, 

plate 1. Two Quantum Physics model LS 32 helium-neon lasers were used as light 
sources and EG and G Type SGD-100 photodiodes as detectors. Detectors and 
lasers were separately mounted on mill traverses, which were adjustable in &a1 
and radial directions relative to the jet. The beams were always moved an equal 
amount so that each passed through an equal length in the jet. Light was focused 
into the detectors using f/3.4 lenses, and the schlieren knife edges were placed 
to intercept the beams before entering the lenses. 

U 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 

(mm) 

FIGURE 3. Combined calibration curves for schlieren instruments. 
Sensitivity S = dE/dS .  
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Signals from the detectors were recorded on a F.M. tape recorder (Ampex 
FR 1300) after amplification in the frequency range 300 Hz to 25 kHz. Increasing 
the upper frequency to 100 kHz made no observable difference to the level of 
cross-covariances but did increase the single beam autocovariance levels and 
apparent bandpasses. The latter increases were the result of increased instrument 
and light source noise. A correlator (PAR Model 101) was used for both on-line 
monitoring as well as calculation of cross-covariances from the taped data. 
Integration times of 5 sec were used throughout in determining covariances. 

Measurements were made in the shear layer of a 2-54cm jet operating at 
nominal efflux speeds of 105 and 210m/s. For comparison purposes, hot-wire 
measurements (Thermo-Systems model 1010 A with a model 1005 B linearizer) 
were made a t  the lower speed setting. 

The sensitivity S ,  of each schlieren system was determined by measuring the 
d.c. detector ouput E as a function of knife edge position 6. Typical plots for the 
two systems are given in figure 3 where we see that the slope S = dEjd& is nearly 
a constant, a t  least within a total movement of 1 mm. Thus we may take the 
constant slope of these curves as the schlieren sensitivity S defined earlier. The 
dynamic range is then limited to deflexions of less than 1 mm however, and this 
limitation is checked later. The distance 1 from the knife edge to  the disturbance 
was measured for each setting of the beams and a was taken as 0.243cc/g 
throughout in analysis of the data. 

5. Results and discussion 
A typical set of covariances is reproduced in figure 4, giving the autocovariance 

for each beam ((e;), (eg) )  as well as the cross-covariance between beams ((eAeB)). 
The ratio 

is a measure of the mean-square signal t o  total noise (instrument plus uncorrelated 
flow noise). For the example of figure 4 this is about 0.25; a rather high value 
compared with previous crossed-beam studies where signals as low as 0.05 of 
total noise have been successfully extracted. 

The analysis leading to ( 14) assumed that cross-covariances were measured 
with a physical space variable 6, whereas in practice it is more convenient to 
measure and analyze cross-covariances with a time-delay as variable. This in 
fact has been done in presenting the data of figure 4. The extent to which the two 
are relatable was determined by measuring convection speed U, and relating the 
space and time variable by 6 = C<T and making measurements for both and r 
variations. The results of such measurements Q&, T ) ,  at x /D = 3, y / D  = 0.5, are 
plotted in figure 5 with 6 as a parameter. The time covariance curves decay with 
increasing 6 as shown. The envelope of the curves is the Lagrangian covariance 
indicating the decay of turbulence following the eddies which move a t  the mean 
convection speed. The time delays and spacings representing the points of 
tangency between the Lagrangian and Eulerian covariances can be plotted as in 
figure 5 to obtain the convection speed U, (140 mlsec). 

The results may also be plotted as two separate curves Q&) and &,(U,T) as 

(eAeB>/ [(e%) (e%)l& 
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FIGURE 4. Typical correlograms ( a )  vertical beam autocovariance, ( b )  horizontal beam 
autocovariance, (c) two-beam cross-covariance. Arbitrary vertical scales. 
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FIGURE 5 .  Turbulence convection measurements y /D  = 0.5, x /D = 3.0, U(0)  = 210rn/sec. 
(a )  Space-time covariances. ( b )  Plot of beam separation distance E ws. corresponding time 
delay for peak covariance. Slope of solid line is U ,  = 140 m/sec. 
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in figure 6. The damped sine-wave shape of the covariances is typical of a peaked 
shape to the corresponding energy spectra (e.g. by Fourier transform of Q,) such 
as we expect for three-dimensional spectra. The peak of the energy spectrum 
should occur at the frequency (or wave-number) corresponding to the dominant 
frequency of the covariance. This latter frequencyfrom figure 6 is about f p  = 5 kHz 
(or wave-number of K~ = 35 perm). We note that the periods of Q&) and Qs(U,7) 
are identical so that the main eddy contribution is obtained with either the space 
or time covariance. There is some small decrease in amplitude of the space- 
covariance for large separations, reflecting the finite turbulence decay or de- 
parture from ‘frozen’ turbulence conditions. The agreement between the two 
is in general good, however, and we are justified in accepting Taylor’s hypothesis 
and using the transformation 6 = Uer, in which case (14) becomes 

I .o 
0.75 

0.50 

0.25 

0 
2 

FIGURE 6. Comparison of ( 0 )  space covariances, &,(E) and ( 0) time covariances &,( U,T)  
y / D  = 0.5, x/D = 3.0, U ,  = 140m/sec. 

A comparison of the covariance curves as obtained by hot-wire and crossed- 
schlieren measurement is presented in figure 7 for U, = 105m/sec. The higher 
frequencies associated with the schlieren measurement are evidenced by the short 
period of its covariance. After integration according to (15) (using a planimeter) 
however, the period becomes almost identical to that of the hot wire, In fact the 
two curves for the two-point covariance Q(r) ,  i.e. by hot-wire and by crossed- 
beam measurement are the same within the accuracy expected. The agreement 
gives strong support to our confidence in the assumptions leading to (14) or (15). 

Turbulence intensity measurements are presented in figure 8. Crossed- 
schlieren measurements with [ = 0 are given for x/D = 3 at the two jet efflux 
speeds. The data on the ordinate are normalized by the change in density po(0) 
across the jet shear layer calculated assuming isentropic expansion from the 
reservoir with the similarity parameter h = ( y  - .!&))/x as the abscissa. Since the 
jet stagnation temperature and the outside ambient temperature were equal 
to within 2”C, the isentropic approximation should be good in the ‘potential 
core’ of the jet. The calculation of p,(O) assumes pressure constant across the 
jet exit plane. Also included in figure 8 are hot-wire measurements at  the lower 
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speed. Probe interference effects made measurements at the higher speed im- 
practical. The profiles are all similar in shape, peaking near the centre of the 
shear layer ( A  = O),  but the levels are not identical; in general the normalized 
density fluctuations are larger than the corresponding velocity fluctuations. 

- 0.4 
0 0.1 0.2 0.3 0.4 0.5 

T (msec) 

FI~WRE 7. Comparison of hot-wire and schlicren covariances. 0 ,  ineasurcd crossed- 
schlieren &,; 0, measured hot-wire &; 0, two-point density covariance from &, and 
equation (1  6 ) .  
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0.24 - 
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FIGURE 8. Turbulence root-moan-square crossed-schliercn density (p’) and hot-wire velocity 
(d) profiles. (a)  Density fluctuations at U(0)  = 210in/sec. (b)  Density fluctuations at 
U(0)  = 105 m/sec. (c) Velocity fluctuations a t  105 m/sec. 
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If we consider density changes p in the flow direction as being isentropically 
related to pressure changes p by p = p/C2(y) where C is the local speed of sound, 
then the density change is related to velocity changes u in the flow direction by 
the one-dimensional linearized momentum equation : 

where primes refer to root-mean-square values. 
Assuming isentropic expansion from ambient temperature (subscript a)  to 

centreline temperature and that density variations across the jet are inversely 
proportional to temperature T ,  

po(0), T(O), U ( 0 )  refer to conditions in the jet potential core at  y = 0. 

For [U(O)/C(O)]2 < 0.5, as is the case for the present study, the term in the square 
bracket can be neglected with an error of no more than 10 %. Hence 

Using the mean velocity profile from Davies, Fisher & Barratt (1963), and 
the measured r.m.s velocity profde from figure 8, a r.m.s. density profile can be 
calculated according to (17). Figure 9 shows a comparison between the calculated 
profile andthe profile measured by the schlieren cfossed-beam. Although the r.m.s. 
velocity profile peaks in the region outside the centre of the shear layer ( A  > 0) 
both the predicted and measured r.m.s. density profiles peak at  h < 0. Although 
hot-wire measurements result in a predicted density fluctuation level 50 yo higher 
than measured by the crossed-schlieren, the agreement is gratifying when we 
consider that for speeds above 100 m/s compressibility effects will alter the hot- 
wire results. No corrections for compressibility have been taken into account. 
Within the accuracy of the assumptions, it appears that the density fluctuations 
are related isentropically to the pressure fluctuations which in turn are driven 
by inertial fluctuations. 

The density levels of figure 8 correspond to a root-mean-square beam-deflexion, 
at the knife edge of less than 0.05 mm. The assumed constancy of the sensitivity 
is therefore justified. 

Convection speeds were measured for the Uo = 210 m/s condition as in figure 5, 
and these are plotted in figure 10. The remarkable observation there is that the 
convection speed is independent of radial distance. Hot-wire results show a 
tendency for convection speeds to vary slowly across the shear layer but they do 
drop about a factor of 2 between h = 0 and h = 0.10. The reason for the present 
observation is not understood at  present but tentatively we might suggest that 
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the schlieren system is sensitive to the sharp density gradients of the jet edge and 
we therefore tend to measure the phase speed of the growth and decay of large 
entrainment eddies. As suggested to the authors we may also be measuring the 
phase speed of instabilities generated in the inflexion region. It has been proposed 
that such instabilities are responsible for the transfer of energy from the mean 
flow to the turbulence (see, for example, Kline 1969). 

0 1 

0.32 - 
0.24 - 
0.16 - 

0.08 - 

n I 

0.05 0.10 0.15 
~~ ~~ 

-0.20-0.15 -0.10 -0.05 0 I 

h 

FIGURE 9. Comparison of measured p‘(y) with p’(y) 
calculated from d(y) using equation (17).  
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FIGURE 10. Convection speed profiles, X / D  = 3.0, U(0)  = 210 m/sec. 
0 ,  crossed-schlieren results; __ , hot-wire results. 

10 

The large difference between convection speed and mean speed near the jet 
edge may indicate that Taylor’s hypothesis and consequently (15) cannot be 
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justified in that region. However, even if this is so the intensity profiles as de- 
termined by (1 3) do not involve this hypothesis and should be valid. 

6. Concluding remarks 
The preliminary experiments presented here support the prediction that 

optical cross-correlation techniques can be used with schlieren instruments to 
obtain density fluctuation statistics in turbulent flows. The jet shear layer used 
for the studies presents a rather severe test for the technique since a direct 
determination of density fluctuations does require the assumption of local 
isotropy. 

Although a more complete assessment of this still must be made the success 
obtained in these preliminary measurements should give confidence in applica- 
tion of the technique to a broad variety of turbulent flows with smaller shear 
gradients. 

The work presented here was supported in part by the Commercial Airplane 
Division of the Boeing Airplane Company, Seattle, Washington. 
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FIGURE 2. Photograph of crossed-schlieren instrument mounted 
around 2.54 cm jet. 
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